Viết phương trình mặt phẳng đi qua trung điểm

Mặt phẳng trung trực của đoạn thẳng là như thế nào? Cách viết phương trình mặt phẳng trung trực ra sao? Nó có gì giống với đường thẳng trung trực hay không? Bài giảng này thầy sẽ giúp các bạn hiểu rõ hơn.

Mặt phẳng trung trực của đoạn thẳng là gì?

Là mặt phẳng vuông góc với đường thẳng tại trung điểm của đường thẳng đó. Mọi điểm nằm trên mặt phẳng trung trực luôn cách đều 2 đầu đoạn thẳng.

Cho đường thẳng MM’ với trung điểm là I và mặt phẳng (P). Mặt phẳng (P) là mặt phẳng trung trực của MM’ nếu (P) vuông góc với đường thẳng MM’ tại I.

Viết phương trình mặt phẳng đi qua trung điểm

Các bạn thấy khái niệm này cũng khá gần gũi với khái niệm đường trung trực của đoạn thẳng phải không? Nếu bạn muốn hiểu thêm về cách viết phương trình đường thẳng trung trực của đoạn thẳng thì xem thêm bài giảng này nhé, cũng rất hay đó: 2 cách viết phương trình đường thẳng trung trực của đoạn thẳng

Cách viết phương trình mặt phẳng trung trực

Ở trên các bạn đã hiểu thế nào là mặt phẳng trung trực của đoạn thẳng, do đó để viết được phương trình của nó thì chúng ta sẽ dựa vào chính khái niệm này.

Giả sử bài toán cho tọa độ 2 điểm A và B.

Bước 1: Tìm tọa độ trung điểm I của đoạn thẳng AB

Bước 2: Tìm vecto $\vec{AB}$

Bước 3: Mặt phẳng trung trực của AB vuông góc với AB tại I do đó nó sẽ đi qua I và nhận vecto $\vec{AB}$ làm vecto pháp tuyến. Tới đây thì chắc chắn các bạn sẽ tìm được phương trình rồi.

Sau đây chúng ta cùng tìm hiểu một số ví dụ áp dụng cho phương pháp trên.

Tham khảo thêm bài giảng:

Bài tập áp dụng

Bài tập 1: Viết phương trình mặt phẳng trung trực của đoạn AB viết $A(1;2;3)$ và $B(3;0;-1)$

Hướng dẫn:

Gọi I là trung điểm của AB, suy ra tọa độ của điểm I là: $I(2;1;1)$

Tọa độ của vecto $\vec{AB}$ là: $\vec{AB}(2;-2;-4)$

Gọi (P) là mặt phẳng trung trực của đoạn AB, suy ra (P) nhận vecto $\vec{AB}(2;-2;-4)$ làm vecto pháp tuyến và đi qua điểm I.

Phương trình mặt phẳng (P) là:

$2(x-2)-2(y-1)-4(z-1)=0 \Leftrightarrow x-y-2z+1=0$

Tuy nhiên không phải bài toán nào cũng yêu cầu chúng ta viết phương trình mặt phẳng trung trực, trực tiếp như bài toán 1. Mà trong một số bài toán chúng ta cần tư duy, phát hiện để thấy được phải sử dụng tới mặt phẳng trung trực của đoạn thẳng. Có thể xét một ví dụ như bài tập 2 dưới đây.

Bài tập 2: Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD biết tọa độ của các điểm là: $A(1;-1;0); B(3;1;2); C(-1;0;2); D(-1;3;0)$.

Hướng dẫn:

Để xác định được mặt cầu ngoại tiếp tứ diện các bạn cần xác định tâm và bán kính. Tâm mặt cầu chính là giao điểm của 3 mặt phẳng trung trực của 3 đoạn AB, BC và CD. Bán kính R của mặt cầu là khoảng cách từ tâm tới 4 đỉnh A, B, C, D.

Về cách viết phương trình mặt cầu ngoại tiếp tứ diện và có liên quan tới mặt phẳng trung trực thầy cũng có 1 bài giảng rồi, các bạn muốn hiểu thêm nhiều hơn thì có thể xem ở link này nhé: 3 cách tìm tâm và bán kính mặt cầu ngoại tiếp tứ diện

Để làm được bài toán này trước tiên các bạn cần xác định được tọa độ các trung điểm của 3 đoạn AB, BC, CD sau đó viết phương trình mặt phẳng trung trực của 3 đoạn này.

Viết phương trình mặt phẳng đi qua trung điểm

Gọi $I, M ,N$ lần lượt là trung điểm của $AB, BC, CD$

Ta có:

$\vec{AB}(2;2;2); \vec{BC}(-4;-1;0); \vec{CD}(0;3;-2)$; $I(2;0;1); M(1; \frac{1}{2};2); N(-1;\frac{3}{2};1)$

Gọi $(P); (Q); (R)$ lần lượt là mặt phẳng trung trực của đoạn AB, BC và CD, ta có:

Phương trình mặt phẳng (P) là: Đi qua điểm I và nhận $\vec{AB}(2;2;2)$ làm vecto pháp tuyến.

$2(x-2)+2(y-0)+2(z-1)=0 \Leftrightarrow x+y+z-3=0$

Phương trình mặt phẳng (Q) là: Đi qua điểm M và nhận $\vec{BC}(-4;-1;0)$ làm vecto pháp tuyến.

$-4(x-1)-1(y-\frac{1}{2})+0(z-2)=0 \Leftrightarrow -8x-2y+9=0$

Phương trình mặt phẳng (R) là: Đi qua điểm N và nhận $ \vec{CD}(0;3;-2)$ làm vecto pháp tuyến.

$0(x+1)+3(y-\frac{3}{2})-2(z-1)=0 \Leftrightarrow 6x-4z-5=0$

Gọi $K$ là tâm của mặt cầu ngoại tiếp tứ diện, khi đó $K$ là giao điểm của 3 mặt phẳng trung trực (P), (Q) và (R). Tọa độ của K là nghiệm của hệ phương trình:

$\left\{\begin{array}{ll}x+y+z-3=0\\-8x-2y+9=0\\6x-4z-5=0\end{array}\right.$ $\Rightarrow K(\frac{1}{6};\frac{23}{6}; -1)$

Tới đây chúng ta xác định tiếp bán kính R của mặt cầu là xong. Bán kính $R= KA$

Vecto $\vec{KA}(\frac{5}{6}; \frac{-29}{6};1)$

Bán kính mặt cầu là: $R=|\vec{KA}| =\sqrt{\left(\frac{5}{6}\right)^2+ \left(\frac{-29}{9}\right)^2+1^2}=\dfrac{\sqrt{902}}{6}$

Vậy phương trình mặt cầu ngoại tiếp tứ diện ABCD là: $(x-\frac{7}{9})^2+(y-\frac{25}{18})^2+(z-\frac{5}{6})^2=\frac{902}{36}$

Qua hai ví dụ trên các bạn đã biết cách viết phương trình đường trung trực của đoạn thẳng. Hãy cho biết suy nghĩ của bạn về bài giảng và đừng quên đăng kí nhận bài giảng mới nhất qua email.

SUB ĐĂNG KÍ KÊNH GIÚP THẦY NHÉ

Viết phương trình mặt phẳng trong không gian Oxyz hay viết phương trình mặt phẳng đi qua 3 điểm là những dạng toán quan trọng trong chương trình toán học THPT. Trong nội dung bài viết dưới đây, DINHNGHIA.VN sẽ giúp bạn tổng hợp kiến thức về chủ đề viết phương trình mặt phẳng trong không gian, cùng tìm hiểu nhé!

Phương trình mặt phẳng trong không gian

Phương trình tổng quát của mặt phẳng trong không gian Oxyz

Phương trình tổng quát của mặt phẳng (P) trong không gian Oxyz có dạng:

Ax + By + Cz + D = 0 với \(A^{2}+B^{2}+C^{2}> 0\)

Muốn viết phương trình mặt phẳng trong không gian ta cần xác định được 2 dữ kiện:

  • Điểm M bất kì mà mặt phẳng đi qua.
  • Vector pháp tuyến của mặt phẳng.

Vị trí tương đối của hai mặt phẳng

Viết phương trình mặt phẳng đi qua trung điểm

Cho 2 mặt phẳng (P): Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0 thì:

Hai mặt phẳng cắt nhau khi và chỉ khi: \(\frac{A}{A’} \neq \frac{B}{B’} \neq \frac{C}{C’}\)

Hai mặt phẳng song song khi và chỉ khi: \(\frac{A}{A’} = \frac{B}{B’} = \frac{C}{C’} \neq \frac{D}{D’}\)

Hai mặt phẳng trùng nhau khi và chỉ khi: \(\frac{A}{A’} = \frac{B}{B’} = \frac{C}{C’} = \frac{D}{D’}\)

Hai mặt phẳng vuông góc khi và chỉ khi: \(AA’ + BB’ + CC’ = 0\)

Khoảng cách từ một điểm tới một mặt phẳng

Cho điểm M(a, b, c) và mặt phẳng (P): Ax + By + Cz + D = 0.

Khi đó khoảng cách từ điểm M tới (P) được xác định như sau:

\(d(A, (P)) = \frac{\left | Aa + Bb + Cc + D \right |}{\sqrt{A^{2} + B^{2} + C^{2}}}\)

Tổng kết lý thuyết viết phương trình mặt phẳng trong không gian

Viết phương trình mặt phẳng đi qua trung điểm

Các dạng bài viết phương trình mặt phẳng trong không gian Oxyz

Dạng 1: Viết phương trình mặt phẳng (P) biết 1 điểm thuộc mặt phẳng và vector pháp tuyến

Vì mặt phẳng (P) đi qua điểm \(M(x_{0}; y_{0}; z_{0})\)

Mặt phẳng (P) có vector pháp tuyến \(\vec{n}(A, B, C)\)

Khi đó phương trình mặt phẳng (P): \(A(x-x_{0}) + B(y-y_{0}) + C(z-z_{0}) = 0\)

Viết phương trình mặt phẳng đi qua trung điểm

Ví dụ 1: Viết phương trình mặt phẳng (P) đi qua M (3;1;1) và có VTPT \(\vec{n} = (1; -1; 2)\)

Cách giải:

Thay tọa độ điểm M và VTPP \(\vec{n}\) ta có:

(P): \((1)(x – 3) + (-1)(y – 1) + 2(z – 1) = 0 \Leftrightarrow x – y + 2z – 4 = 0\)

Dạng 2: Viết phương trình mặt phẳng (P) đi qua 3 điểm không thẳng hàng

Vì mặt phẳng (P) đi qua 3 điểm A, B, C. Nên mặt phẳng (P) có 1 cặp vector chỉ phương là \(\vec{AB} ; \vec{AC}\)

Khi đó ta gọi \(\vec{n}\) là một vector pháp tuyến của (P), thì \(\vec{n}\) sẽ bằng tích có hướng của hai vector \(\vec{AB}\) và \(\vec{AC}\). Tức là \(\vec{n} = \left [ \vec{AB};\vec{AC} \right ]\)

Viết phương trình mặt phẳng đi qua trung điểm

Ví dụ 2: Viết phương trình mặt phẳng (P) đi qua 3 điểm không thẳng hàng A(1,1,3); B(-1,2,3); C(-1;1;2)

Cách giải:

Ta có: \(\vec{AB} = (-2;1;0); \vec{AC} = (-2,0,-1) \Rightarrow \left [ \vec{AB},\vec{AC} \right ] = (-1,-2,2)\)

Suy ra mặt phẳng (P) có VTPT là \(\vec{n} = \left [ \vec{AB},\vec{AC} \right ] = (-1,-2,2)\) và đi qua điểm A(1,1,3) nên có phương trình:

\((-1)(x – 1) – 2(y – 1) + 2(z – 3) = 0\Leftrightarrow -x – 2y + 2z – 3 = 0\)

Dạng 3: Viết phương trình mặt phẳng đi qua 1 điểm và song song với 1 mặt phẳng khác

Mặt phẳng (P) đi qua điểm \(M(x_{0}; y_{0}; z_{0})\) và song song với mặt phẳng (Q): Ax + By + Cz + m =0

Vì M thuộc mp(P) nên thế tọa độ M và pt (P) ta tìm được M.

Khi đó mặt phẳng (P) sẽ có phương trình là:

\(A(x – x_{0}) + B(y – y_{0}) + C(z – z_{0}) = 0\)

Chú ý: Hai mặt phẳng song song có cùng vector pháp tuyến.

Ví dụ 3: Viết phương trình mặt phẳng (P) đi qua điểm M (1;-2;3) và song song với mặt phẳng (Q): 2x – 3y + z + 5 = 0

Cách giải:

Vì (P) song song với (Q) nên VTPT của (P) cùng phương với VTPT của (Q).

Suy ra (P) có dạng: 2x – 3y + z + m = 0

Mà (P) đi qua M nên thay tọa độ M (1;-2;3) ta có:

\(2.1 + (-3).(-2) + 3 + m = 0 \Leftrightarrow m = -11\)

Vậy phương trình (P): 2x – 3y + z – 11 = 0  

Dạng 4: Viết phương trình mặt phẳng đi qua 1 đường thẳng và 1 điểm cho trước

Mặt phẳng (P) đi qua điểm \(M(x_{0}; y_{0}; z_{0})\) và đường thẳng d.

Lấy điểm A thuộc đường thẳng d ta tìm được vector \(\vec{MA}\) và VTCP \(\vec{u}\), từ đó tìm được VTPT \(2.1 \vec{n} = \left [ \vec{MA};\vec{u} \right ]\).

Thay tọa độ ta tìm được phương trình mặt phẳng (P)

Ví dụ 4: Viết phương trình mặt phẳng (P) đi qua điểm M (3;1;0) và đường thẳng d có phương trình: \(\frac{x – 3}{-2} = \frac{y + 1}{1} = \frac{z + 1}{1}\)

Cách giải:

Lấy điểm A (3;-1;-1) thuộc đường thẳng d.

Suy ra \(\vec{MA} (0; -2; -1)\) và VTCP \(\vec{u} (-2; 1; 1)\)

Mặt phẳng (P) chứa d và đi qua M nên ta có VTPT: \(\vec{n} = \left [ \vec{MA};\vec{u} \right ] = (-1; 2; 4)\)

Vậy phương trình mặt phẳng (P): \(-1(x – 3) + 2(y – 1) – 4z = 0\Leftrightarrow -x + 2y – 4z + 1 = 0\)

Xem thêm >>> Phương trình đường thẳng trong không gian Oxyz

Xem thêm >>> Chuyên đề phương pháp tọa độ trong không gian: Lý thuyết và Bài tập 

Trên đây là bài viết tổng hợp kiến thức về viết phương trình mặt phẳng trong không gian Oxyz. Nếu có băn khoăn thắc mắc hay góp ý về chủ đề viết phương trình mặt phẳng trong không gian Oxyz, các bạn để lại bình luận bên dưới để chúng mình cùng trao đổi nhé. Cảm ơn các bạn, nếu thấy hay thì chia sẻ nha <3

Xem chi tiết qua bài giảng dưới đây

(Nguồn: Youtube.com)

Please follow and like us:

Viết phương trình mặt phẳng đi qua trung điểm

Viết phương trình mặt phẳng đi qua trung điểm