De thi hsg toan 9 tp thanh hóa nam 2023-2023 năm 2024

THCS.TOANMATH.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra vào sáng thứ Tư ngày 26 tháng 04 năm 2023.

Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2022 – 2023 sở GD&ĐT Thanh Hóa: + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: y = (a − 1)x + b − 2 (a và b là tham số). Biết đường thẳng d song song với đường thẳng d’: y = 3x + 8 và đi qua điểm A(2;3). Tính T = a2 + 2b2. + Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0 (với m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn điều kiện: (x12 – 2mx1 + 2m − 1)(x22 – 2mx2 + 2m − 1) < 0. + Cho tam giác ABC không có góc tù (AB < AC) và nội tiếp đường tròn (O) (B và C cố định và A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I. 1. Chứng minh MBOC là tứ giác nội tiếp. 2. Chứng minh FI.FM = FD.FE. 3. Tìm vị trí của đỉnh A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất.

  • Khảo Sát Chất Lượng Toán 9

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

Kính mời quý nhà trường, phụ huynh & học sinh để lại thông tin để nhận tư vấn miễn phí về giải pháp của chúng tôi

Tin tức mới nhất

De thi hsg toan 9 tp thanh hóa nam 2023-2023 năm 2024

Công bố đề tham khảo thi tốt nghiệp THPT 2024

Thứ sáu, 22/3/2024, 02:44 AM

Bộ Giáo dục và Đào tạo ngày 22/3 công bố đề tham khảo thi tốt nghiệp THPT 2024 của 15 môn.

Học liệu mới nhất

De thi hsg toan 9 tp thanh hóa nam 2023-2023 năm 2024

Đề thi giữa học kì 2 môn Toán Lớp 6 năm học 2023 - 2024

Thứ sáu, 22/3/2024, 06:56 AM

Đề thi giữa học kì 2 môn Toán Lớp 6 năm học 2023 - 2024

De thi hsg toan 9 tp thanh hóa nam 2023-2023 năm 2024

Kiến tạo thế hệ ưu tú

CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)

đã xây dựng thành công một đội ngũ kỹ sư Al/Phần mềm tuyệt vời. Chúng tôi đang tìm cách phát triển quan hệ đối tác chiến lược với các công ty khởi nghiệp trong các lĩnh vực mà Al thực sự có thể tạo ra đột phá.

Thầy cô giáo và các em học sinh có nhu cầu tải các tài liệu dưới dạng định dạng word có thể liên hệ đăng kí thành viên Vip của Website: tailieumontoan.com với giá 500 nghìn thời hạn tải trong vòng 6 tháng hoặc 800 nghìn trong thời hạn tải 1 năm. Chi tiết các thức thực hiện liên hệ qua số điện thoại (zalo ): 0393.732.038

Điện thoại: 039.373.2038 (zalo web cũng số này, các bạn có thể kết bạn, mình sẽ giúp đỡ)

Kênh Youtube: https://bitly.com.vn/7tq8dm

Email: [email protected]

Group Tài liệu toán đặc sắc: https://bit.ly/2MtVGKW

Page Tài liệu toán học: https://bit.ly/2VbEOwC

Website: http://tailieumontoan.com

Tài liệu được cập nhật liên tục trong gói này từ nay đến hết tháng 3/2024. Chúng tôi đảm bảo đủ số lượng đề đã cam kết hoặc có thể nhiều hơn, tất cả có BẢN WORD, LỜI GIẢI CHI TIẾT và tải về dễ dàng.

Để tải tài liệu gốc về máy bạn click vào nút Tải Xuống ở trên!

1

Bộ 30 đề thi HSG Toán 9 có đáp án

Đề thi được cập nhật thêm mới liên tục hàng năm sau mỗi kì thi trên cả nước. Chúng tôi đảm bảo đủ số lượng đề đã cam kết hoặc có thể nhiều hơn, tất cả có

Mathx.vn biên soạn gửi tới các em hướng dẫn giải chi tiết đề thi tuyển chọn học sinh giỏi cấp tỉnh của sở GDĐT Thanh Hóa môn toán khối THCS năm học 2023 2024. Các em học sinh tải để về làm trước sau đó so sánh kết quả và cách giải chi tiết trong bài viết này. Chúc các em học tập tốt!

.png?fbclid=IwAR10nKALalzJolDcLXVYkzAnIQYyQzbFDNrWGuDpeLvcv8lkaeLO-CuH_2c)

ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH

SỞ GDĐT THANH HÓA

(ĐÁP ÁN + LỜI GIẢI CHI TIẾT)

Môn thi: Toán - THCS

Năm học: 2023 - 2024

Thời gian làm bài: 150 phút

De thi hsg toan 9 tp thanh hóa nam 2023-2023 năm 2024

Câu I (4 điểm).

1. Cho biểu thức:

\({\mathrm{A}}=\left(2-{\dfrac{2{\sqrt{x y}}+1}{1+{\sqrt{x y}}}}+{\dfrac{1}{1-{\sqrt{x y}}}}+{\dfrac{2{\sqrt{x}}}{1-x y}}\right):\left({\dfrac{{\sqrt{x y}}-{\sqrt{x}}}{{\sqrt{x y}}+1}}-{\dfrac{{\sqrt{x y}}+{\sqrt{x}}}{{\sqrt{x y}}-1}}\right)\)

(với \(x > 0, y > 0, xy \neq 1\)). Rút gọn biểu thức A

2. Cho a là số thực thỏa mãn: \(a^{3} - a - 1 = 0\). Tính giá trị của biểu thức

\(B=a\sqrt{2a^{6}-4a^{4}+4a^{2}+3a}-\sqrt{2a^{2}+3a+2}\)

Giải

1.

Ta có:

\({\mathrm{A}}=\left(2-{\dfrac{2{\sqrt{x y}}+1}{1+{\sqrt{x y}}}}+{\dfrac{1}{1-{\sqrt{x y}}}}+{\dfrac{2{\sqrt{x}}}{1-x y}}\right):\left({\dfrac{{\sqrt{x y}}-{\sqrt{x}}}{{\sqrt{x y}}+1}}-{\dfrac{{\sqrt{x y}}+{\sqrt{x}}}{{\sqrt{x y}}-1}}\right)\)

\(= \left(\dfrac{2\Bigl(1+\sqrt{x y}\Bigr)-2\sqrt{x y}-1}{1+\sqrt{x y}}+\dfrac{1}{1-\sqrt{x y}}+\dfrac{2\sqrt{x}}{1-x y}\right) : \left({\dfrac{\left({\sqrt{x y}}-{\sqrt{x}}\right)\left({\sqrt{x y}}-1\right)-\left({\sqrt{x y}}+{\sqrt{x}}\right)\left({\sqrt{x y}}+1\right)}{\left({\sqrt{x y}}+1\right)\left({\sqrt{x y}}-1\right)}}\right) \\ = \left({\dfrac{1}{1 + {\sqrt{x y}}}}+{\dfrac{1}{1 - {\sqrt{x y}}}}+{\dfrac{2{\sqrt{x}}}{1-x y}}\right) : \dfrac{x y-\sqrt{x y}-x\sqrt{y}+\sqrt{x}-x y-\sqrt{x y}-x\sqrt{y}-\sqrt{x}}{x y - 1} \\ = {\dfrac{1-{\sqrt{x y}}+1+{\sqrt{x y}}+2{\sqrt{x}}}{1-x y}} . \dfrac{x y-1}{-2x{\sqrt{y_{-}}}-2{\sqrt{x y}}} \\ = {\dfrac{2+2{\sqrt{x}}}{1-x y}}.{\dfrac{1-x y}{2{\sqrt{x y}}({\sqrt{x}}+1)}} \\ = \dfrac{1}{\sqrt{x y}}\)

Vậy \(A = \dfrac{1}{\sqrt{x y}}\) với \(x > 0, y > 0, xy \neq 1\)

2.

\(B=a\sqrt{2a^{6}-4a^{4}+4a^{2}+3a}-\sqrt{2a^{2}+3a+2} = a{\sqrt{2a^{2}+3a+2(a^{3}-a){2}}} - {\sqrt{2a{2}+3a+2}}\)

\(B = (a - 1) {\sqrt{2a_{-}^{2}+3a+2}}\) (1)

\(B^{2} = (a - 1){2} . (2a{2} + 3a + 2) = \left(a^{2}{-}2a{+}1\right).(2a^{2}{+}3a{+}2) = 2a {4} - a {3} - 2a {2} -a + 2 = \left(2a-1\right)\left(a{3}- a -1\right) + 1=1\) (2)

Vì \(a(a^{2} - 1) = 1\) nên \(a \neq 0\)

Nếu a < 0 thì \(a(a^{2} - 1) = 1\)

\(\begin{cases}{{a^{2} - 1 <0}}\\ {{a + 1 = a^{3} < 0}}\end{cases} \Rightarrow \begin{cases}{{-1 < a < 1}}\\ {{a < -1}}\end{cases}\) Vô lí

Do đó a > 0. Suy ra: \(a^{3} = a + 1 > 1 \Rightarrow a > 1 \Rightarrow a - 1 > 0 \Rightarrow B > 0\) (3)

Từ (1) (2) (3) suy ra: B = 1

Câu II (4,0 điểm)

1. Giải phương trình:

\(3{{\sqrt{x{3}+5x^{2}}}}-1={\sqrt{{\dfrac{5x^{2}-2}{6}}}}\)

2. Giải hệ phương trình:

\(\begin{cases}{{x^{2}y^{2}+3x+3y-3=0}}\\ {{x^{3}y-4x^{2}y-3x y^{2}+2x y-x^{2}+x=0}}\end{cases}\)

Giải

1.

ĐKXĐ: \(x ^ {3} \geq \dfrac {2}{5}\) (*)

Đặt \(t =\,{\sqrt{\dfrac{5x^{2}-2}{6}}}\) (\(t \geq 0\)). Suy ra \(5x^{2} = 6 t^{2} + 2\)

\({{3}\sqrt{x{3} + 5x^{2}}} -1=t \Rightarrow x {3} + 6 t{2} + 2 = {(t+1){3}} \Leftrightarrow x {3} = {(t+1)^{3}} \Leftrightarrow x = t - 1 \Leftrightarrow t = x + 1\)

\(\sqrt{\dfrac{5x^{2}-2}{6}}=x+1 \Leftrightarrow \begin{cases}{{x \geq 1}}\\ {{\sqrt{\dfrac{5x^{2}-2}{6}}=(x+1)^2}}\end{cases} \\ \Leftrightarrow \begin{cases}{{x \geq 1}}\\ {{x ^2 + 12x + 8 = 0}}\end{cases} \\ \Leftrightarrow x = -6 + 2\sqrt{7}\)

So sánh với điều kiện (*) thì phương trình có nghiệm là \(x = -6 + 2\sqrt{7}\)

2.

\(\begin{cases}{{x^{2}y^{2}+3x+3y-3=0}} \ \ \ (1) \\ {{x^{3}y-4x^{2}y-3x y^{2}+2x y-x^{2}+x=0}} \ \ \ (2) \end{cases}\)

Lấy phương trình (2) cộng với phương trình (1) theo vế, ta có:

\(x^{2}y^{2}+3x+3y-3 + x^{3}y-4x^{2}y-3x y^{2}+2x y-x^{2}+x = 0 \\ \Leftrightarrow (x^3y+x^2y^2-x^2y)-(x^2+xy-x)-(3x^2y+3xy^2-3xy)+(3x+3y-3)=0 \\ \Leftrightarrow x^2y(x+y-1)-x(x+y-1)-3xy(x+y-1)+3(x+y-1)=0 \\ \Leftrightarrow (x+y-1)(x^2y-3xy-x+3)=0 \Leftrightarrow \left[\begin{array}{c}{{x+y-1=0}}\\ {{(x^2y-3xy-x+3)=0}}\end{array}\right.\)

Với x + y - 1 = 0 => y = 1 - x thế vào (1)

\(\Leftrightarrow x^2(1-x)^2 = 0 \Leftrightarrow \left[\begin{array}{c}{{x=0 \Rightarrow y=1}}\\ {{x=1 \Rightarrow y=0}}\end{array}\right.\)

Với \((x^2y-3xy-x+3)=0 \Leftrightarrow (x-3)(xy-1) = 0 \Leftrightarrow \left[\begin{array}{c}{{x-3=0}}\\ {{xy-1=0}}\end{array}\right. \Leftrightarrow \left[\begin{array}{c}{{x=3}}\\ {{x=\dfrac{1}{y}}}\end{array}\right.\)

Khi x = 3 thế vào (1) \(\Leftrightarrow 9y^3 + 3y+6=0\) (vô nghiệm)

Khi \(x = \dfrac {1}{y}\) thế vào (1) \(\Leftrightarrow 3y^3 - 2y+3=0\) (vô nghiệm)

Vậy tập nghiệm của hệ phương trình là S = {(0;1),(1;0)}

Câu III (4,0 điểm)

1. Giải phương trình nghiệm nguyên:

\(y={^3{\sqrt{2+{\sqrt{x}}}}}+{^3{\sqrt{2-{\sqrt{x}}}}}\)

2. Cho n là số nguyên dương thỏa mãn \(3^{n} - 1\) chia hết cho \(2^{2024}\).

Chứng minh rằng \(n\geq2^{2022}\)

Giải

1.

\(y={^3{\sqrt{2+{\sqrt{x}}}}}+{^3{\sqrt{2-{\sqrt{x}}}}}\) (1)

ĐKXĐ: \(x \geq 0\)

Nhận thấy: \(y={^3{\sqrt{2+{\sqrt{x}}}}} > {^3{\sqrt{-2+{\sqrt{x}}}}}\) nên

\(y={^3{\sqrt{2+{\sqrt{x}}}}}+{^3{\sqrt{2-{\sqrt{x}}}}} > {^3{\sqrt{-2+{\sqrt{x}}}}}+{^3{\sqrt{2-{\sqrt{x}}}}} = 0 => y > 0\)

Lập phương 2 vế của (1) ta được:

\(y^3=4+3({^3{\sqrt{2+{\sqrt{x}}}}} + {^3{\sqrt{2-{\sqrt{x}}}}}){^3{\sqrt{4-x}}} \Rightarrow y^3=4+3.y.{{^3{\sqrt{4-x}}}} \Rightarrow {{^3{\sqrt{4-x}}}} = \dfrac{y^3-4}{3y}\) (vì y > 0) (2)

Vì \(x \geq 0\) nên \( {{^3{\sqrt{4-x}}}} = \dfrac{y^3-4}{3y} \leq {^3{\sqrt{4}}}\)

\=> \(y^3 \leq 3y.{^3{\sqrt{4}}} + 4 \Leftrightarrow y^3 - 3y.{^3{\sqrt{4}}} \leq 4 \Leftrightarrow y(y^2-3.{^3{\sqrt{4}}}) \leq 4\) (*)

Nếu \(y \geq 3\) thì \(y(y^2-3.{^3{\sqrt{4}}}) \geq 3.(9-3.{^3{\sqrt{4}}}) > 4\) mâu thuẫn với (*)

Do đó y < 3 kết hợp vói y > 0 ta được \(y\in\{1,2\}\) vì y nguyên

+. Xét y = 2 thay vào (2) ta được: \({{^3{\sqrt{4-x}}}} = \dfrac {2}{3}\) (vô lý, vì \(x\in Z\) )

+. Xét y = 1 thay vào (2) ta được: \({{^3{\sqrt{4-x}}}} = -1 \Leftrightarrow x = 5\)

Thử lại ta thấy x = 5 và y = 1 thỏa mãn bài toán

Vậy phương trình có nghiệm: (x;y) = (5;1)

2)

Vì n > 0 nên ta đặt \(n = 2^k .m\) (\(k;m \in Z\); m lẻ)

Ta có: \(3^n-1=(3^{2^k})m -1= (3{2^k} - 1) ((3^{2^k}){m-1} + (3{2^k}){m-2} + ... +3{2^k} +1)\)

Do m lẻ nên tổng \((3^{2^k} - 1) ((3^{2^k}){m-1} + (3{2^k}){m-2} + ... +3{2^k} +1)\) có lẻ số hạng nên tổng đó là số lẻ

Do đó \(3^{n} - 1 \ \vdots \ 2^{2024} \Leftrightarrow 3^{2^k} - 1 \ \vdots \ 2^{2024}\)

Ta lại có:

\((3^{2^k} - 1) = (3-1)(3+1)(3^2+1)(3^{2^2}+1)(3^{2^3}+1)...(3^{2^{k-1}}+1) \\ = 2^3(3^2+1)(3^{2^2}+1)(3^{2^3}+1)...(3^{2^{k-1}}+1)\)

Với \(a \in ({1;2;3;...;k-1})\) , ta có

\(3^{2^k} +1 = [(3^{2^{k-1}})2-1] + 2 = (3{2^{k-1}}-1)(3^{2^{k-1}}+1) +2\)

Vì \((3^{2^{k-1}}-1) và (3^{2^{k-1}}+1)\) là các số chẵn nên tích chia hết cho 4

Do đó \(3^{2^k} +1\) chia hết cho 2 nhung không chia hết cho 4

\(\Rightarrow (3^2+1)(3^{2^2}+1)(3^{2^3}+1)...(3^{2^{k-1}}+1) \ \vdots \ 2^{k-1} \\ \Rightarrow 2^3(3^2+1)(3^{2^2}+1)(3^{2^3}+1)...(3^{2^{k-1}}+1) \ \vdots \ 2^{k+2} \\ \Rightarrow 3^n -1 \ \vdots \ 2^{k+2}\)

Để \(3^n -1 \ \vdots \ 2^{2024}\) thì \(2^{k+2} \ \vdots \ 2^{2024}\) \=> \(k+2 \geq 2024\)

\=> \(k \geq 2022\) \=> \(n=2^k.m \geq 2^k \geq 2^{2022}\)

Vậy ta có điều phải chứng minh

Câu IV (6 điểm)

Cho tam giác đều ABC có độ dài cạnh bằng \(2{\sqrt{3}}\) và đường cao AH. Trên đoạn BH lấy điểm M tùy ý (M không trùng B, H). Gọi P, Q lần lượt là chân đường vuông góc kẻ từ M đến AB, AC

1. Chứng minh giá trị của biểu thức MP + MQ không phụ thuộc và vị trí của điểm M

2. Gọi K là trung điểm của AM

  1. Chứng minh rằng tứ giác PKQH là hình thoi
  1. Gọi S là diện tích hình thoi PKQH. Biết khi điểm M thay đổi thì S nhận đúng một giá trị nguyên dương. Tìm giá trị nguyên dương đó

3. Vẽ đường tròn (O) nội tiếp tam giác ABM. Gọi D, E, F theo thứ tự là tiếp điểm của (O) với các cạnh BM, AB, AM. Vẽ DN vuông góc với EF tại N. Chứng minh \({\widehat{B N E}}={\widehat{M N F}}\)

De thi hsg toan 9 tp thanh hóa nam 2023-2023 năm 2024

Giải

1.

Trong \(\Delta B M P\) vuông ở P, ta có: \(MP = MB.sinMBP=MB.sin60^0=\dfrac {{\sqrt{3}}}{2}MB\)

Tương tự, ta chứng minh được: \(MQ = \dfrac {{\sqrt{3}}}{2} MC\)

\=> \(MP+MQ= \dfrac {{\sqrt{3}}}{2}(MB+MC)=\dfrac {{\sqrt{3}}}{2}BC=\dfrac {{\sqrt{3}}}{2}.2{\sqrt{3}}=3\) không phụ thuộc vào vị trí của điểm M

2.

a.

Do \({\widehat{A P M}}={\widehat{A Q M}} = {\widehat{A H M}} = 90^o\) nên theo tính chất đường trung tuyến của tam giác vuông, ta có

\(KP = KQ = KH = \dfrac {1}{2}AM\) (1)

Trong \(\Delta PKH\) cân ở K có \({\widehat{P K H}}=2{\widehat{P A H}} = 2{\widehat{B A H}} = 2.30^o= 60^o\)

Vậy \(\Delta PKH\) đều => HP = HK (2)

Tương tự, ta chứng minh được \(\Delta QKH\) \=> HQ = HK (3)

Từ (1) (2) (3) ta được \(HP = PK = KQ = QH = HK = \dfrac {1}{2}AM\) nên tú giác PKQH là hình thoi

b.

Ta có \(S=S_{PKQH}=2S_{PKH}=2.KH^2.\dfrac {{\sqrt{3}}}{4}=\dfrac {{\sqrt{3}}}{2}KH^2=\dfrac {{\sqrt{3}}}{8}AM^2>\dfrac {{\sqrt{3}}}{8}AH^2=\dfrac {9{\sqrt{3}}}{8}\)

\(S=S_{PKQH}=\dfrac {{\sqrt{3}}}{8}AM^2<\dfrac {{\sqrt{3}}}{8}AB^2=\dfrac {3{\sqrt{3}}}{2} \Rightarrow 1,95 \approx \dfrac {9{\sqrt{3}}}{8} < S <\dfrac {3{\sqrt{3}}}{2} \approx 2.60 \Rightarrow S=2\)

3.

De thi hsg toan 9 tp thanh hóa nam 2023-2023 năm 2024

Gọi B', M' lần lượt là hình chiếu của B, M lên EF. Gọi N' là giao điểm của DN và BM'. Khi đó BB' // DN // MM' nên áp dụng định lý Talet trong các \(\Delta BMM'\) ; \(\Delta M'BB'\) ta có:

\(\begin{cases}{\dfrac {MD}{DB}} = \dfrac {M'N'}{N'B} \\ {{\dfrac {M'N'}{N'B} = \dfrac {M'N}{NB'}}}\end{cases} \) \=> \(\dfrac {BD}{DM} = \dfrac {B'N}{NM'}\) (4)

Xét \(\Delta BB'E\) và \(\Delta MM'F\) , ta có:

\({\widehat{B B' E}}={\widehat{M M' F}} = 90^o\)

\({\widehat{B E B'}}={\widehat{A E F}} = {\widehat{A F E}}\) (\(\Delta AEF\) cân tại F do AE = AF theo tính chất tiếp tuyến) = \( {\widehat{M F M'}}\)

Vậy \({\widehat{B E B'}} \) ~ \({\widehat{M M' F}} \) (g.g) => \(\dfrac {B'E}{M'F} = \dfrac {BE}{MF}= \dfrac {BD}{DM}\) (5) (do BE = BD; MF = MD theo tính chất tiếp tuyến)

Từ (4) và (5), ta được \(\dfrac {B'N}{NM'} = \dfrac {B'E}{M'F}= \dfrac {B'N-B'E}{NM'-M'F}= \dfrac {EN}{FN}\)

Xét \(\Delta BNE\) và \(\Delta MNF\) , ta có:

\({\widehat{B E N}}={\widehat{M F N}}\)

\(\dfrac {EN}{FN} = \dfrac {B'N}{NM'}= \dfrac {BE}{MF}\)

Vậy \(\Delta BNE\) ~ \(\Delta MNF\) (c.g.c) => \({\widehat{B N E}}={\widehat{M N F}}\) (ĐPCM)

Câu V (2 điểm)

Cho a, b, c là các số thực dương thỏa mãn \(a + b + c = {\dfrac{a}{b}}+{\dfrac{b}{c}}+{\dfrac{c}{a}}\)

Tìm giá trị lớn nhất của biểu thức: \(\mathrm{P}={\dfrac{\mathrm{a}+\mathrm{b}+1}{\mathrm{a}{3}+\mathrm{b}{3}+1}}+{\dfrac{\mathrm{b}+\mathrm{c}+\mathrm{l}}{\mathrm{b}{3}+\mathrm{c}{3}+\mathrm{l}}}+{\dfrac{\mathrm{c}+\mathrm{a}+1}{\mathrm{c}{3}+\mathrm{a}{3}+\mathrm{l}}}\)

Giải

Áp dụng bất đẳng thức Cauchy cho giả thiết ta được

\(\mathbf{a}+\mathbf{b}+\mathbf{c}={\dfrac{\mathbf{a}}{\mathbf{b}}}+{\dfrac{\mathbf{b}}{\mathbf{c}}}+{\dfrac{\mathbf{c}}{\mathbf{a}}}\geq 3\)

Mặt khác áp dụng bất đẳng thức Bunhiacopxki dạng phân thức cho giả thiết ta được

\(\mathbf{a}+\mathbf{b}+\mathbf{c}={\dfrac{\mathbf{a}}{\mathbf{b}}}+{\dfrac{\mathbf{b}}{\mathbf{c}}}+{\dfrac{\mathbf{c}}{\mathbf{a}}}\geq \dfrac{\left(a+\mathrm{b}+\mathrm{c}\right)^{2}}{\mathrm{ab+bc+ca}} \Rightarrow ab +bc +ca \geq a + b +c \geq 3\)

Áp dụng bất đẳng thức Bnhiacopxki ta có

\((a^3+b^3+1)(a+b+1) \geq (a^2+b^2+1)^2 \geq \dfrac {(a+b+1)^2(a^2+b^2+1)}{3}\)

Do đó ta được

\(\dfrac {a+b+1}{a^3+b^3+1} \leq \dfrac {3}{a^2+b^2+1}\)

Tương tự ta thu được

\(P \leq \dfrac {3}{a^2+b^2+1} + \dfrac {3}{b^2+c^2+1} + \dfrac {3}{c^2+a^2+1}\)

Ta sẽ chứng minh; \(\dfrac {1}{a^2+b^2+1} + \dfrac {1}{b^2+c^2+1} + \dfrac {1}{c^2+a^2+1} \leq 1\)

Thật vậy, bất đẳng thức trên được viết lại thành

\(\dfrac {a^2+b^2}{a^2+b^2+1} + \dfrac {b^2+c^2}{b^2+c^2+1} + \dfrac {c^2+a^2}{c^2+a^2+1} \geq 2\)

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được

\(\dfrac {a^2+b^2}{a^2+b^2+1} + \dfrac {b^2+c^2}{b^2+c^2+1} + \dfrac {c^2+a^2}{c^2+a^2+1} \geq \dfrac { ( \sqrt{a^{2}+b^{2}} + \sqrt{b^{2}+c^{2}} + \sqrt{c^{2}+a^{2}} )^2 }{2(a^2+b^2+c^2)+3}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được

\(( \sqrt{a^{2}+b^{2}} + \sqrt{b^{2}+c^{2}} + \sqrt{c^{2}+a^{2}} )2 \geq 4(a^2+b^2+c^2)+6 \\ \Leftrightarrow {\sqrt{\left(\mathbf{a}{2}+\mathbf{b}{2}\right)\left(\mathbf{b}{2}+\mathbf{c}{2}\right)}} + {\sqrt{\left(\mathbf{b}{2}+\mathbf{c}{2}\right)\left(\mathbf{c}{2}+\mathbf{a}{2}\right)}} + {\sqrt{\left(\mathbf{c}{2}+\mathbf{a}{2}\right)\left(\mathbf{a}{2}+\mathbf{b}^{2}\right)}} \geq a^2+b^2+c^2+3\)

Áp dụng bất đẳng thức Bunhiacopxki ta được

\({\sqrt{\left(\mathbf{a}{2}+\mathbf{b}{2}\right)\left(\mathbf{b}{2}+\mathbf{c}{2}\right)}} \geq b^2+ac\)

Áp dụng tương tự ta được

\({\sqrt{\left(\mathbf{a}{2}+\mathbf{b}{2}\right)\left(\mathbf{b}{2}+\mathbf{c}{2}\right)}} + {\sqrt{\left(\mathbf{b}{2}+\mathbf{c}{2}\right)\left(\mathbf{c}{2}+\mathbf{a}{2}\right)}} + {\sqrt{\left(\mathbf{c}{2}+\mathbf{a}{2}\right)\left(\mathbf{a}{2}+\mathbf{b}{2}\right)}} \geq a^2+b^2+c^2+ab+bc+ca\)

Mà từ giả thiết ta được \(ab+bc+ca \geq 3\). Do vậy ta được

\({\sqrt{\left(\mathbf{a}{2}+\mathbf{b}{2}\right)\left(\mathbf{b}{2}+\mathbf{c}{2}\right)}} + {\sqrt{\left(\mathbf{b}{2}+\mathbf{c}{2}\right)\left(\mathbf{c}{2}+\mathbf{a}{2}\right)}} + {\sqrt{\left(\mathbf{c}{2}+\mathbf{a}{2}\right)\left(\mathbf{a}{2}+\mathbf{b}{2}\right)}} \geq a^2+b^2+c^2+3\)

Vậy bất đẳng thức được chứng minh

Suy ra giá trị lớn nhất của P là 3

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1

Trên đây MATHX đã hướng dẫn các em chữa đề thi tuyển chọn học sinh giỏi cấp tỉnh của sở GDĐT Thanh Hóa môn toán khối THCS năm học 2023 2024